Gauge Optimization, Duality, and Applications
نویسندگان
چکیده
Gauge functions significantly generalize the notion of a norm, and gauge optimization, as defined by Freund (1987), seeks the element of a convex set that is minimal with respect to a gauge function. This conceptually simple problem can be used to model a remarkable array of useful problems, including a special case of conic optimization, and related problems that arise in machine learning and signal processing. The gauge structure of these problems allows for a special kind of duality framework. This paper explores the duality framework proposed by Freund, and proposes a particular form of the problem that exposes some useful properties of the gauge optimization framework (such as the variational properties of its value function), and yet maintains most of the generality of the abstract form of gauge optimization.
منابع مشابه
Low-Rank Spectral Optimization via Gauge Duality
Various applications in signal processing and machine learning give rise to highly structured spectral optimization problems characterized by low-rank solutions. Two important examples that motivate this work are optimization problems from phase retrieval and from blind deconvolution, which are designed to yield rank-1 solutions. An algorithm is described that is based on solving a certain cons...
متن کاملFoundations of Gauge and Perspective Duality
Common numerical methods for constrained convex optimization are predicated on efficiently computing nearest points to the feasible region. The presence of a design matrix in the constraints yields feasible regions with more complex geometries. When the functional components are gauges, there is an equivalent optimization problem—the gauge dual—where the matrix appears only in the objective fun...
متن کاملDual gauge programs, with applications to quadratic programming and the minimum-norm problem
A gauge function f(.) is a nonnegative convex function that is positively homogeneous and satisfies f(O)=O. Norms and pseudonorms are specific instances of a gauge function. This paper presents a gauge duality theory for a gauge program, which is the problem of minimizing the value of a gauge function f(.) over a convex set. The gauge dual program is also a gauge program, unlike the standard La...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملGauge Optimization and Duality
Gauge functions significantly generalize the notion of a norm, and gauge optimization, as defined by [R. M. Freund, Math. Programming, 38 (1987), pp. 47–67], seeks the element of a convex set that is minimal with respect to a gauge function. This conceptually simple problem can be used to model a remarkable array of useful problems, including a special case of conic optimization, and related pr...
متن کامل